ON THE LEAST COMMON MULTIPLE OF POLYNOMIAL SEQUENCES AT PRIME ARGUMENTS

AYAN NATH AND ABHISHEK JHA

ABSTRACT. Cilleruelo conjectured that if $f \in \mathbb{Z}[x]$ is an irreducible polynomial of degree $d \geq 2$ then, $\log \text{lcm}\{f(n) \mid n < x\} \sim (d-1)x \log x$. In this article, we investigate the analogue of prime arguments, namely, $lcm{f(p) | p < x}$, where p denotes a prime and obtain non-trivial lower bounds on it. Further, we also show some results regarding the greatest prime divisor of $f(p)$.

1. Introduction

For a polynomial $f \in \mathbb{Z}[x]$, define $L_f(x) = \text{lcm}\{f(n) \mid n < x \text{ and } f(n) \neq 0\}$, where the lcm of an empty set is taken to be 1. The Prime Number Theorem is equivalent to

$$
\log \operatorname{lcm}\{1, 2, \ldots, n\} \sim n.
$$

Therefore, we expect similar rate of growth for the case when f is a product of linear polynomials; see the article by Hong, Qian, and Tan [\[7\]](#page-8-0) for a thorough analysis of this case. However, the growth is not the same for higher degree polynomials. Cilleruelo in [\[2\]](#page-8-1) conjectured that $\log L_f(x) \sim (d-1)x \log x$ for irreducible polynomials f of degree $d > 2$ and proved it for $d = 2$. For some time, $\log L_f(x) \gg x$ proven by Hong, Luo, Qian, and Wang in [\[6\]](#page-8-2), for polynomials with non-negative integer coefficients, was the strongest bound known. Recently, the conjectured order of growth was obtained by Maynard and Rudnick in [\[10\]](#page-9-0) and the bound was improved to $x \log x$ by Sah in [\[12\]](#page-9-1). For a thorough survey on the least common multiple of polynomial sequences, see [\[1\]](#page-8-3).

In this article, we study the analogous problem at prime arguments. From the Prime Number Theorem, we know that

$$
\log \operatorname{lcm}\{p \mid p < x\} \sim x.
$$

This motivates us to consider $\text{lcm}\{f(p) \mid p \lt x\}$ for an arbitrary polynomial $f \in \mathbb{Z}[x]$. For simplicity, we will only consider irreducible polynomials f.

Theorem 1.1. Let $f \in \mathbb{Z}[x]$ be an irreducible polynomial of degree d. Then,

 $\log \text{lcm}\lbrace f(p) \mid p < x \rbrace \gg x^{1-\varepsilon(d)},$

where $\varepsilon(1) = 0.3735$, $\varepsilon(2) = 0.153$ *and* $\varepsilon(d) = \exp\left(\frac{-d - 0.9788}{2}\right)$ $\binom{0.9788}{2}$ *for* $d \geq 3$.

²⁰¹⁰ Mathematics Subject Classification. Primary: 11N32, Secondary: 11A41.

Key words and phrases. Polynomial; Primes; Least Common Multiple; Greatest Prime Divisor.

We remark that $\log \text{km}\lbrace f(p) \mid p < x \rbrace \leq (d + o(1))x \ll x$ follows from the Prime Number Theorem.

There is a lot of literature on the subject of largest prime divisor of $p + a$ for some fixed integer a. Goldfeld in [\[4\]](#page-8-4) showed that there is a positive proportion of primes p such that $p + a$ has a prime divisor greater than p^{δ} for $\delta = 0.5$. The strongest known result in this regard is $\delta = 0.677$ proven by Baker and Harman in [\[5,](#page-8-5) Theorem 8.3], an improvement of $\delta = 0.6687$ obtained by Fouvry in [\[3\]](#page-8-6). Luca in [\[9\]](#page-9-2) obtained lower bounds on the proportion of such primes p for $\delta \in [\frac{1}{4}]$ $\frac{1}{4}$, $\frac{1}{2}$ $\frac{1}{2}$. Similar work is also done for quadratic polynomials. Wu and Xi in [\[14\]](#page-9-3) proved that there exist infinitely many primes p such that $p^2 + 1$ has a prime divisor greater than $p^{0.847}$ by virtue of the Quadratic Brun-Titchmarsh theorem (see Theorem [2.4\)](#page-2-0) developed by the authors.

We obtain a result of a similar flavor for general polynomials which we state as follows.

Theorem 1.2. Let $f \in \mathbb{Z}[x]$ be an irreducible polynomial of degree d. Then, there *is a positive proportion of primes* p *such that* f(p) *has a prime divisor greater than* $p^{1-\varepsilon(d)}$, *where* $\varepsilon(1) = 0.3735$, $\varepsilon(2) = 0.153$ *and* $\varepsilon(d) = \exp\left(\frac{-d - 0.9788}{2}\right)$ *for* $d \geq 3$.

The following table shows some values of $1 - \varepsilon(d)$ for various d.

TABLE 1. Values of $1 - \varepsilon(d)$

$\overline{1-\varepsilon(d)}$ 0.6265 0.847 0.8632 0.9170 0.9496 0.9694 0.9814 0.9887				

Notations. We employ Landau-Bachmann notations \mathcal{O} and o as well as their associated Vinogradov notations ≪ and ≫. We say that $a(x) \sim b(x)$ if

$$
\lim_{x \to \infty} \frac{a(x)}{b(x)} = 1.
$$

As usual, define $\pi(x; m, a)$ to be the number of primes $p \leq x$ such that $p \equiv a$ a (mod m). Throughout the article, p and q will denote primes, and we fix an irreducible polynomial $f \in \mathbb{Z}[x]$ of degree $d > 1$. We will often suppress the dependence of constants on f . At places, we may use Mertens' first theorem without commentary.

2. Background

Theorem 2.1 (Brun-Titchmarsh, [\[11\]](#page-9-4)). Let $\theta = \frac{\log m}{\log r}$ $\frac{\log m}{\log x}$, where $\theta \in (0, 1)$. Then,

$$
\pi(x; m, a) < (C(\theta) + o(1)) \cdot \frac{x}{\phi(m) \log x}
$$

where

$$
C(\theta) = \frac{2}{1 - \theta}.
$$

Corollary 2.2. Let $\varepsilon > 0$ be a constant. Then,

$$
\pi(x; m, a) \ll_{\varepsilon} \frac{x}{\phi(m) \log x}
$$

for all positive integers $m < x^{1-\epsilon}$.

Theorem 2.3 (Iwaniec, [\[8\]](#page-9-5)). Let $\theta = \frac{\log m}{\log r}$ $\frac{\log m}{\log x}$ where $\theta \in \left[\frac{9}{10}, \frac{2}{3}\right]$ 3]. *Then,*

$$
\pi(x; m, a) < (C(\theta) + o(1)) \cdot \frac{x}{\phi(m) \log x},
$$

where

$$
C(\theta) = \frac{8}{6 - 7\theta}.
$$

Theorem 2.4 (Wu and Xi, [\[15\]](#page-9-6)). Let $A > 0$ and $f(x)$ be an irreducible quadratic *polynomial. Define* $\varsigma(m) = \#\{p < x \mid f(p) \equiv 0 \pmod{m}\}\$ *and* $\rho(m)$ *to be the number of solutions of the congruence* $f(x) \equiv 0 \pmod{m}$. *For large* $L = x^{\theta}$ *with* $\theta \in [\frac{1}{2}]$ $(\frac{1}{2}, \frac{16}{17})$, *we have*

$$
\varsigma(m) \le (C(\theta) + o(1))\rho(m) \cdot \frac{x}{\phi(m)\log x},
$$

for all $m \in [L, 2L]$ *with at most* $\mathcal{O}_A(L/(\log L)^A)$ *exceptions, where*

$$
C(\theta) = \begin{cases} \frac{124}{91 - 89\theta} & , \text{ if } \theta \in [\frac{1}{2}, \frac{64}{97}) \\ \frac{120}{86 - 83\theta} & , \text{ if } \theta \in [\frac{64}{97}, \frac{32}{41}) \\ \frac{28}{19 - 18\theta} & , \text{ if } \theta \in [\frac{32}{41}, \frac{16}{17}). \end{cases}
$$

Theorem 2.5 (Bombieri-Vinogradov). Let $A \geq 6$ and $Q \leq x^{\frac{1}{2}}/(\log x)^{A}$. Then,

$$
\sum_{q\leq Q} \max_{2\leq y\leq x} \max_{(a,q)=1} \left| \pi(y;q,a) - \frac{y}{\phi(q)\log y} \right| \ll_A \frac{x}{(\log x)^B},
$$

where $B = A - 5$.

Lemma 2.6. Let f be an irreducible integer polynomial and $\rho(m)$ be the number *of roots of the congruence* $f(x) \equiv 0 \pmod{m}$. *Then,*

$$
\sum_{p < x} \frac{\rho(p) \log p}{p - 1} = \log x + R + o(1)
$$

for some constant R.

Proof. By [\[13,](#page-9-7) 3.3.3.5], we have that

$$
\sum_{p < x} \rho(p) = \text{Li}(x) + \mathcal{O}\left(\frac{x}{(\log x)^3}\right),\,
$$

where $Li(x)$ is the logarithmic integral. Applying Abel summation formula,

$$
\sum_{p < x} \frac{\rho(p) \log p}{p} = \frac{\log x}{x} \sum_{p < x} \rho(p) + \int_2^x \frac{\log x - 1}{x^2} \left(\sum_{p < u} \rho(p) \right) du + C_0
$$
\n
$$
= C_0 + 1 + \mathcal{O}\left(\frac{1}{\log x}\right) + \int_2^x \frac{\log u - 1}{u^2} \operatorname{Li}(u) du + \mathcal{O}\left(\int_2^x \frac{\log u - 1}{u(\log u)^3} du\right)
$$
\n
$$
= \log x + C_1 + \mathcal{O}\left(\frac{1}{\log x}\right)
$$

for some constants C_0 and C_1 . And the sum

$$
\sum_{p
$$

is $C_2 + o(1)$ for some constant C_2 . Hence, our lemma is proved.

3. Proof of Theorem [1.1](#page-0-0)

3.1. Setup. We study the product defined by

$$
Q(x) = \prod_{q < x} |f(q)| = \prod_{p} p^{\alpha_p(x)}
$$

and exploit the fact that the contribution of prime factors less than x^{δ} is negligible compared to that of prime factors greater than x^{δ} , where δ is a parameter in $(\frac{1}{2}, 1)$ to be chosen later. For some large enough constant B, set $x_{\mathfrak{b}} = x^{1/2} (\log x)^{-B}$ for brevity.

Define $\rho(m)$ to be the set of residues modulo m which satisfy the congruence $f(x) \equiv 0 \pmod{m}$ and $\rho(m)$ to be the cardinality of $\rho(m)$. Note that we have $\rho(m) \leq d$ by Lagrange's theorem and that if $p \nmid \text{disc } f$ then $\rho(p) = \rho(p^n)$ for all $n \geq 2$ by Hensel's lemma. Also define $\varsigma(m)$ to be the sum

$$
\sum_{r \in \varrho(m)} \pi(x; m, r),
$$

the number of elements in $\{f(p) | p < x\}$ divisible by m.

3.2. Estimating small primes. We define

$$
Q_S(x) = \prod_{p < x_{\mathfrak{b}}} p^{\alpha_p(x)},
$$

the part of $Q(x)$ consisting of small prime divisors. The main result here is the following.

Proposition 3.1. $\log Q_S(x) = \frac{x}{2} - \frac{Bx \log \log x}{\log x} + \mathcal{O}\left(\frac{x}{\log x}\right)$ $\frac{x}{\log x}\bigg)$

The proof uses an estimate on $\alpha_p(x)$ making it easy to directly apply the Bombieri-Vinogradov theorem (Theorem [2.5\)](#page-2-1) in the end. The following result is proved by standard analysis involving Hensel's lemma and the Brun-Titchmarsh theorem (Corollary [2.2\)](#page-2-2).

Lemma 3.2. *Let* p *be a prime. If* $p \nmid \text{disc } f$ *, then*

$$
\alpha_p(x) = \sum_{p^n < x_b} \varsigma(p^n) + \mathcal{O}\left(\frac{x}{\max\{p, x_b\} \log x} + \frac{(\log x)^{2B}}{\log p}\right);
$$

else if p | disc f, *we have*

$$
\alpha_p(x) = \varsigma(p).
$$

Proof. The case when $p \mid \text{disc } f$ is easy to solve. So, let us assume $p \nmid \text{disc } f$. Observe that

$$
\alpha_p(x) = \sum_{n=1}^{\infty} \varsigma(p^n).
$$

When $p^n \geq x$, we see that $\varsigma(p^n) \leq \rho(p^n) \leq d$. If p^n divides $f(k)$ for some $1 \leq k \leq x$, we have $p^n \leq f(k) \leq f(x) < x^{d+1}$, which implies that $n < (d+1)\frac{\log x}{\log p}$. Thus,

$$
\alpha_p(x) = \sum_{n=1}^{\infty} \varsigma(p^n) = \sum_{p^n < x} \varsigma(p^n) + \mathcal{O}\left(\frac{\log x}{\log p}\right).
$$

We split the summation into three intervals: $p^{n} \in [1, x_{b}] \cup (x_{b}, x^{0.9}] \cup (x^{0.9}, x)$. The last summation is

$$
\sum_{p^n \in (x^{0.9},x)} \varsigma(p^n) \le \sum_{p^n \in (x^{0.9},x)} \sum_{r \in \varrho(p^n)} \left(\frac{x}{p^n} + 1 \right) \le \sum_{p^n \in (x^{0.9},x)} \rho(p^n) (x^{0.1} + 1) \ll x^{0.2}.
$$

By Corollary [2.2,](#page-2-2) the second summation is

$$
\sum_{p^{n} \in (x_{b}, x^{0.9}] } \varsigma(p^{n}) \ll \frac{\rho(p)x}{\log x} \sum_{x_{b} < p^{n} \leq x^{0.9}} \frac{1}{\phi(p^{n})}
$$
\n
$$
\ll \frac{x}{\max\{p, x_{b}\} \log x} + \frac{x}{\log x} \sum_{\substack{n \geq 2 \\ x_{b} < p^{n} \leq x^{0.9}}} \frac{1}{p^{n}}
$$
\n
$$
\ll \frac{x}{\max\{p, x_{b}\} \log x} + \frac{x}{\log x} \cdot \frac{\log x}{\log p} \cdot \frac{1}{p^{2}}
$$
\n
$$
\ll \frac{x}{\max\{p, x_{b}\} \log x} + \frac{(\log x)^{2B}}{\log p}.
$$

Thus, our lemma is proved.

Proof of Proposition [3.1.](#page-3-0) Using Lemma [3.2,](#page-4-0)

$$
\log Q_S(x) = \sum_{p < x_b} \alpha_p(x) \log p
$$
\n
$$
= \sum_{p < x_b} \left(\sum_{p^n < x_b} \varsigma(p^n) + \mathcal{O}\left(\frac{x}{x_b \log x} + \frac{(\log x)^{2B}}{\log p}\right) \right) \log p
$$
\n
$$
= \sum_{m < x_b} \varsigma(m)\Lambda(m) + \mathcal{O}\left(\frac{x}{\log x}\right).
$$

Using Theorem [2.5](#page-2-1) and Lemma [2.6,](#page-2-3) we can estimate the above sum as

$$
\sum_{m < x_{\mathfrak{b}}} \varsigma(m) \Lambda(m) = \frac{x}{\log x} \sum_{m < x_{\mathfrak{b}}} \frac{\rho(m) \Lambda(m)}{\phi(m)} + \mathcal{O}\left(\frac{x}{(\log x)^{B-5}}\right)
$$
\n
$$
= \frac{x}{\log x} \left(\frac{1}{2} \log x - B \log \log x\right) + \mathcal{O}\left(\frac{x}{(\log x)^{B-5}}\right)
$$
\n
$$
= \frac{x}{2} - \frac{Bx \log \log x}{\log x} + \mathcal{O}\left(\frac{x}{\log x}\right),
$$

proving the result. \Box

3.3. Removing medium-sized primes. Define the product

$$
Q_M(x) = \prod_{x_b \le p \le x^{1/2}} p^{\alpha_p(x)},
$$

the part of $Q(x)$ consisting of medium-sized primes. The main result of this section is the following.

Proposition 3.3. $\log Q_M(x) \ll \frac{x \log \log x}{\log x}$.

This means we can just remove medium-sized primes from $\log Q(x)$ and only lose a sublinear portion. The proof is a simple computation using Lemma [3.2.](#page-4-0)

Proof of Proposition [3.3.](#page-5-0) From Lemma [3.2,](#page-4-0) it follows that

$$
\log Q_M(x) = \sum_{x_b \le p \le x^{1/2}} \alpha_p(x) \log p
$$

\n
$$
\ll \sum_{x_b \le p \le x^{1/2}} \left(\frac{x}{p \log x} + \frac{(\log x)^{2B}}{\log p} \right) \log p
$$

\n
$$
= \frac{x}{\log x} \sum_{x_b \le p \le x^{1/2}} \frac{\log p}{p} + \mathcal{O}(x^{1/2} (\log x)^{2B})
$$

\n
$$
\ll \frac{x \log \log x}{\log x},
$$

as desired. \Box

3.4. Bounding large primes. Define the product

$$
Q_L(x) = \prod_{x^{1/2} < p < x^{\delta}} p^{\alpha_p(x)}
$$

,

the part of $Q(x)$ consisting of large primes. The main result of this section is the following.

Proposition 3.4. $\log Q_L(x) \leq (1 + o(1))x \int_{1/2}^{\delta} C(\theta) d\theta$.

The proof uses the Brun-Titchmarsh theorem (Theorem [2.1](#page-1-0) and [2.3\)](#page-2-4) and involves standard procedures to convert sums over primes to integrals.

Proof of Proposition [3.4.](#page-5-1) Let p be a prime in $(x^{1/2}, x^{\delta})$. Similar to the proof of Lemma [3.2,](#page-4-0) we have

$$
\alpha_p(x) = \sum_{n=1}^{\infty} \varsigma(p^n) = \varsigma(p) + \mathcal{O}(\log x/\log p) = \varsigma(p) + \mathcal{O}(1)
$$

as $p^2 > x$. Therefore,

$$
\log Q_L(x) = \sum_{x^{1/2} < p < x^{\delta}} \alpha_p(x) \log p
$$
\n
$$
= \sum_{x^{1/2} < p < x^{\delta}} \varsigma(p) \log p + O(x^{\delta}).
$$

By Theorem [2.1,](#page-1-0) [2.3](#page-2-4) and Lemma [2.6,](#page-2-3) we have

$$
\sum_{x^{1/2} < p < x^{\delta}} \varsigma(p) \log p \le \sum_{x^{1/2} < p < x^{\delta}} \frac{(C(\theta) + o(1))x}{\phi(p) \log x} \rho(p) \log p
$$
\n
$$
= \frac{x}{\log x} \sum_{x^{1/2} < p < x^{\delta}} \frac{C(\theta) + o(1)}{\phi(p)} \rho(p) \log p
$$
\n
$$
= \frac{x}{\log x} \sum_{x^{1/2} < p < x^{\delta}} C(\theta) \frac{\rho(p) \log p}{p - 1} + o\left(\frac{x \log \log x}{\log x}\right).
$$

It can be verified that the above inequality is true even when f is an irreducible quadratic polynomial and we apply Theorem [2.4](#page-2-0) instead of Theorem [2.3.](#page-2-4) By standard techniques to convert sums over primes into integrals, we have

$$
\sum_{x^{1/2} < p < x^{\delta}} \varsigma(p) \log p \le (1 + o(1))x \int_{1/2}^{\delta} C(\theta) \, \mathrm{d}\theta,
$$

proving the lemma.

3.5. The main bound. It is easy to see that

$$
\log Q(x) = \sum_{p < x} (d \log p + \mathcal{O}(1)) = dx + \mathcal{O}(x/\log x).
$$

Define

$$
Q_{VL}(x) = \prod_{p \ge x^{\delta}} p^{\alpha_p(x)},
$$

the part of $Q(x)$ consisting of primes at least x^{δ} (*very large* primes). Using Propositions [3.1,](#page-3-0) [3.3,](#page-5-0) and [3.4,](#page-5-1) we obtain

$$
\log Q_{VL}(x) = \log \frac{Q(x)}{Q_S(x)Q_M(x)Q_L(x)} \ge \left(d - \frac{1}{2} - \int_{1/2}^{\delta} C(\theta) \, \mathrm{d}\theta + o(1)\right)x.
$$

Proposition 3.5. $\log Q_{VL}(x) \geq \left(d - \frac{1}{2} - \int_{1/2}^{\delta} C(\theta) \; {\rm d}\theta + o(1) \right) x.$

3.6. **Bounding the integral.** The strategy will be to make δ as large as possible while keeping Proposition [3.5](#page-6-0) non-trivial. Thanks to Theorem [2.1](#page-1-0) and [2.3,](#page-2-4) we are able to bound the integral effortlessly. For $d \geq 2$,

$$
\int_{1/2}^{\delta} C(\theta) \, d\theta = \int_{1/2}^{2/3} C(\theta) \, d\theta + \int_{2/3}^{\delta} C(\theta) \, d\theta
$$

<
$$
< \int_{1/2}^{2/3} \frac{8}{6 - 7\theta} \, d\theta + \int_{2/3}^{\delta} \frac{2}{1 - \theta} \, d\theta
$$

<
$$
< -1.4788 - 2\log(1 - \delta).
$$

The case $d = 1$ is a little special because we cannot make δ greater than 2/3. For $d=1,$

$$
\int_{1/2}^{\delta} C(\theta) \, d\theta < \int_{1/2}^{\delta} \frac{8}{6 - 7\theta} \, d\theta < 1.0472 - \frac{8}{7} \log(6 - 7\delta).
$$

3.7. Choosing δ . To preserve the linear lower bound in Proposition [3.5,](#page-6-0) we want to have

$$
d - \frac{1}{2} \ge -1.4788 - 2\log(1 - \delta)
$$

if $d \geq 2$. This reduces to $\delta \leq 1 - \exp\left(\frac{-d - 0.9788}{2}\right)$. And for $d = 1$,

$$
1 - \frac{1}{2} \ge 1.0472 - \frac{8}{7} \log(6 - 7\delta) \implies \delta \le 0.62656.
$$

However, we can do a lot better for $d = 2$, thanks to Theorem [2.4.](#page-2-0) The following numerical computation, also performed in [\[14\]](#page-9-3), shows that

$$
\int_{1/2}^{\delta} C(\theta) \, \mathrm{d}\theta \le \int_{\frac{1}{2}}^{\frac{64}{97}} \frac{124}{91 - 89\theta} \, \mathrm{d}\theta + \int_{\frac{64}{97}}^{\frac{32}{41}} \frac{120}{86 - 83\theta} \, \mathrm{d}\theta + \int_{\frac{32}{41}}^{\delta} \frac{28}{19 - 18\theta} \, \mathrm{d}\theta < \frac{3}{2}
$$

with $\delta = 0.847$. Thus, we set $\delta = 1 - \varepsilon(d)$ for the rest of the argument, where $\varepsilon(1) = 0.3735, \ \varepsilon(2) = 0.153, \text{ and } \varepsilon(d) = \exp\left(\frac{-d - 0.9788}{2}\right) \text{ for } d \geq 3.$

3.8. Finishing the argument. Define $L(x) = \text{lcm}\lbrace f(p) \mid p < x \rbrace$. Let p be a prime such that $p \geq x^{\delta}$. Note that the exponent of p in $Q(x)$ is $\mathcal{O}(x^{1-\delta})$. We know that $\log Q_{VL}(x) \gg x$. Therefore,

$$
x \ll \log Q_{VL}(x) \ll x^{1-\delta} \sum_{\substack{p \ge x^{\delta} \\ p \mid Q(x)}} \log p.
$$

Thus,

$$
\log L(x) > \sum_{\substack{p \ge x^{\delta} \\ p | Q(x)}} \log p \gg x^{\delta},
$$

as desired.

Remark 3.6. It is worth noting that the same method gives $\log \text{rad} \operatorname{cm} \{f(p) \}$ $p < x$ } $\gg x^{1-\epsilon(d)}$, similar to that obtained by Sah in [\[12\]](#page-9-1).

4. DIGRESSION ON THE GREATEST PRIME DIVISOR OF $f(p)$

The main ingredient in proving Theorem [1.2](#page-1-1) is Proposition [3.5,](#page-6-0) which provides us a good handle on large primes dividing $Q(x)$.

Proof of Theorem [1.2.](#page-1-1) By Proposition [3.5,](#page-6-0)

$$
\log Q_{VL}(x) = \sum_{q < x} \sum_{\substack{p > x^{\delta} \\ p \mid f(q)}} \log p \gg x.
$$

Set $\delta = 1 - \varepsilon(d)$. Let the number of primes p less than x such that $f(p)$ has a prime divisor greater than x^{δ} be $N(x)$. Note that if $p \mid Q(x)$, then $p < x^{d+1}$ for all large x . Thus,

$$
N(x) \gg \sum_{qx^{\delta} \\ p|f(q)}} 1 \gg \sum_{qx^{\delta} \\ p|f(q)}} \frac{\log p}{\log x^{d+1}} \gg \frac{1}{\log x} \sum_{qx^{\delta} \\ p|f(q)}} \log p \gg \frac{x}{\log x},
$$

which completes the proof. \Box

Remark 4.1. *It can be seen that the Elliott–Halberstam conjecture allows us to take* ε (*d*) *to be any positive constant. For completeness, a formulation of the Elliott-Halberstam conjecture is as follows:*

Elliott-Halberstam Conjecture. *Define the error function*

$$
E(x;q) = \max_{\gcd(a,q)=1} \left| \pi(x;q,a) - \frac{\pi(x)}{\varphi(q)} \right|,
$$

where the max *is taken over all* a *relatively prime to* q. For every $\theta < 1$ and $A > 0$, we have

$$
\sum_{1 \le q \le x^{\theta}} E(x; q) \ll_{\theta, A} \frac{x}{\log^{A} x}.
$$

We end the article with the following question for readers.

Question 4.2. Let f be an irreducible integer polynomial. Is it true that $\log \text{cm}\{f(p) \mid$ $p < x \} \gg x?$

REFERENCES

- 1. D. Bazzanella and C. Sanna, Least common multiple of polynomial sequences, Rend. Semin. Mat. Univ. Politec. Torino 78(1) (2020) 21–25.
- 2. J. Cilleruelo, The least common multiple of a quadratic sequence. Compos. Math. 147(4) (2011) 1129–1150.
- 3. E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème der Fermat, Invent. Math. 79 (1985) 383-408.
- 4. M. Goldfeld, On the number of primes p for which $p + a$ has a large prime factor, *Mathe*matika 16(1) (1969) 23–27.
- 5. G. Harman, Prime-Detecting Sieves (Princeton University Press, 2007).
- 6. S. Hong, Y. Luo, G. Qian and C. Wang, Uniform lower bound for the least common multiple of a polynomial sequence, C. R. Math. Acad. Sci. Paris $351(21-22)$ (2013) 781–785.
- 7. S. Hong, G. Qian and Q. Tan, The least common multiple of a sequence of products of linear polynomials, Acta Math. Hungar. 135(1-2) (2012) 160–167.

10 AYAN NATH AND ABHISHEK JHA

- 8. H. Iwaniec, On the Brun-Titchmarsh theorem, J. Math. Soc. Japan 34(1) (1982) 95–123.
- 9. F. Luca, R. Menares and A. Pizarro-Madariaga, On shifted primes with large prime factors and their products, Bull. Belg. Math. Soc. Simon Stevin 22 (2015) 39–47.
- 10. J. Maynard and Z. Rudnick, A lower bound on the least common multiple of polynomial sequences, Riv. Mat. Univ. Parma 12(1) (2021) 143–15.
- 11. H. L. Montgomery and R. C. Vaughan, The Large Sieve. Mathematika 20(02) (1973) 119.
- 12. A. Sah, An improved bound on the least common multiple of polynomial sequences, J. Théor. Nombres Bordeaux $32(3)$ (2020) 891–899.
- 13. J.-P. Serre, Lectures on $N_X(p)$ (CRC Press Book, Research Notes in Mathematics, 2011).
- 14. J. Wu and P. Xi, Quadratic polynomials at prime arguments, Math. Z. 285 (2017) 631–646.
- 15. J. Wu and P. Xi, Arithmetic exponent pairs for algebraic trace functions, to appear in Algebra Number Theory.

Kaliabor College, Kuwaritol, Assam, India Email address: ayannath7744@gmail.com

Indraprastha Institute of Information Technology, New Delhi, India Email address: abhishek20553@iiitd.ac.in