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Abstract. Recently, there has been some interest in values of arithmetical
functions on members of special sequences, such as Euler’s totient function ϕ
on factorials, linear recurrences, etc. In this article, we investigate, for given
positive integers a and b, the least positive integer c = c(a, b) such that the
quotient ϕ(c!)/ϕ(a!)ϕ(b!) is an integer. We derive results on the limit of the
ratio c(a, b)/(a + b) as a and b tend to infinity. Furthermore, we show that
c(a, b) > a+ b for all pairs of positive integers (a, b) with an exception of a set
of density zero.

1. Introduction

In recent years, there has been some interest in values of arithmetical func-
tions, especially Euler’s totient function ϕ, on members of special sequences.
Baczkowski et al. in [1] investigated arithmetic functions and factorials, pre-
cisely, ϕ(n!), d(n!) and σ(n!), where d is the divisor counting function and σ
is summatory functions for divisors. In [6], Luca and Shparlinski obtained as-
ymptotic formulas for moments of certain arithmetic functions with linear re-
currence sequences. Further, Luca in [5] considered ϕ(Fn), where Fn is the nth
Fibonacci number. In [7], Luca and Stănică investigated quotients of the form
ϕ(Cm)/ϕ(Cn), where Cn is the nth Catalan number.

Luca and Stănică in [8] considered an analogue of binomial coefficients con-
structed by the Euler’s totient function ϕ, which were previously proven to be in-
tegral by Edgar in [2]. The authors defined the ϕ-actorial as n!ϕ = ϕ(1)ϕ(2) · · ·ϕ(n),
and the phinomial coefficient as(

a+ b

a

)
ϕ

=
(a+ b)!ϕ
a!ϕb!ϕ

.

In a similar spirit, we consider the quotient

ϕ((a+ b)!)

ϕ(a!)ϕ(b!)
.

Now, it does not take long to see that the above quantity is not always an integer.
In fact, the quotient is not an integer for all pairs (a, b) with an exception of a
set of density zero, as implied by Theorem 1.2, though there do exist arbitrarily
large a and b such that the expression is an integer; indeed, it is an integer for
(a, b) = (n, ϕ(n!)− 1) (see Proposition 4.2 for more such pairs).
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Many interesting divisiblities in number theory are of the form f(a)f(b) | f(c)
where f : N → N is a function. A classical result of Erdős [3] states there is an
absolute constant c so that if a!b! divides n! then a + b < n + c log n, but for
infinitely many values of n and some positive constant c, it follows that n!/a!b! is
an integer with a+b = bn+c log nc. In fact, it is true that (2n)!/(n!bn+c log nc!)
is an integer for all n with an exception of a set of density zero (see [4]). This
motivates us to consider the quotient

ϕ(c!)

ϕ(a!)ϕ(b!)
.

As ϕ(n!) divides ϕ(m!) whenever m ≥ n, it makes sense to study the least
positive integer c such that ϕ(a!)ϕ(b!) divides ϕ(c!). Let us denote the least such
c for a pair (a, b) as c(a, b). To understand the behaviour of c(a, b) we plot a
graph between a+ b and c(a, b) for all pairs (a, b) with 1 ≤ a, b ≤ 100. With the
help of a computer, we obtain the plot shown in Figure 1.

0      20 40 60 80 100
a+ b

20

40

60

80

100

c(
a,
b)

Figure 1. Plot of c(a, b) versus a+ b.

One immediately observes that the plot resembles the line x = y. This suggests
that c(a, b) is close to a + b, which motivates us to study the ratio r(a, b) =
c(a, b)/(a+ b) for pairs (a, b).

Definition 1.1. Define c(a, b) as the least positive integer c such that ϕ(a!)ϕ(b!)
divides ϕ(c!), and denote the ratio c(a, b)/(a+ b) as r(a, b).

It is observed using a computer that almost always r(a, b) > 1. Table 1 shows
the proportion of pairs (a, b) with 1 ≤ a, b ≤ N such that r(a, b) > 1 for various
values of N .

The following theorem proved in this article confirms the evidence obtained in
Table 1.
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Table 1. Proportions of pairs (a, b) such that r(a, b) > 1.

N 100 200 300 400 500 600 700 800
Proportion 0.249 0.643 0.757 0.819 0.864 0.882 0.903 0.918

Theorem 1.2. For all pairs of positive integers (a, b), we have r(a, b) > 1 with
an exception of a set of density zero.

Seeing Figure 1, it is natural to ask whether lima,b→∞ r(a, b) exists, and if yes,
does it equal 1? Or, if the limit does not exist, what are the values of the limit
inferior and the limit superior? The following theorem shows the exact value of
the limit inferior.

Theorem 1.3.
lim inf
a,b→∞

r(a, b) = 1.

Studying the limit superior is equivalent to obtaining bounds on the ratio
r(a, b). We prove the following “sharp” upper bound on r(a, b).

Theorem 1.4. For all large positive integers a and b, we have r(a, b) ≤ 9
8
.

Unfortunately, it turns out that the sequence r(a, b) fluctuates between values;
it never stabilizes. Figure 2 shows a plot of n versus r(n, n).

0      500 1000 1500 2000 2500 3000 3500 4000
n

0.995

1.015

1.035

1.055

1.075

1.095

1.115

1.135

r(n
,n

)

Figure 2. Fluctuation of r(n, n).

Under the hypothesis of Dickson’s conjecture, a very well-believed and intuitive
hypothesis in number theory, we prove the following theorem showing that the
limit does not exist.

Theorem 1.5. Assuming Dickson’s conjecture, there are infinitely many positive
integers n such that

r(n, n) ≥ 9

8
− 9

8n
.
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More importantly, Theorem 1.5 shows that Theorem 1.4 is sharp in the sense
that the constant 9/8 cannot be improved any further. It is now easy to see that
Theorems 1.4 and 1.5 imply the following.

Corollary 1.6. Assuming Dickson’s conjecture, we have

lim sup
a,b→∞

r(a, b) =
9

8
.

The paper is organized as follows. In Section 2, we state some well-known
results and prove a preliminary lemma. In Section 3, we show that almost all
pairs (a, b) satisfy r(a, b) > 1 and hence prove Theorem 1.2. We present the
proofs of Theorems 1.3 and 1.4 in Sections 4 and 5, respectively. Finally, in
Section 6, we prove Theorem 1.5 under the hypothesis of Dickson’s conjecture
which concludes the result of Corollary 1.6.

Notations. We employ Landau-Bachmann notations O and o as well as their
associated Vinogradov notations� and� with their usual meanings. Through-
out the article, the letters p and q are reserved for primes, and the letters a and b
will always denote positive integers. As usual, define π(x;m, a) to be the number
of primes p < x such that p ≡ a (mod m). For a prime p and a non-zero integer n,
define νp(n) as the exponent of p in the prime factorisation of n. For a non-zero
rational number r = a/b where a and b are integers, define νp(r) = νp(a)− νp(b)
for any prime p.

2. Preliminaries

Here we list out some classical results which are going to be helpful in our
work. The following theorem is crucial in proving Lemma 2.4.

Theorem 2.1 (Siegel-Walfisz). Let C be a positive constant. If a and q are two
relatively prime positive integers such that a < q � (log x)C, then∣∣∣∣π(x; q, a)− 1

ϕ(q)
· x

log x

∣∣∣∣� x

(log x)B

for some absolute constant B > C + 1.

Theorem 2.2 (Legendre). For all positive integers n and primes p,

νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
=
n− sp(n)

p− 1
,

where sp(n) is the sum of the digits of n in base-p.

Theorem 2.3 (Kummer). Let p be a prime. The highest power of a prime p
that divides

(
n
k

)
is the number of carries in the addition k + (n− k) in base-p.

We know that ϕ(n!) = n!
∏

p≤n
p−1
p

. So, to calculate the exponent of q in

ϕ(n!), we are interested in estimating νq(
∏

p<x(p−1)), which is exactly what the
following lemma is about.
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Lemma 2.4. If q is a fixed prime and K is a real constant, then

νq

(∏
p<x

(p− 1)

)
=

q

(q − 1)2
· x

log x
+O

(
x

logK x

)
.

Proof. By a simple double counting argument, observe that

νq

(∏
p<x

(p− 1)

)
=
∑
qn<x

π(x; qn, 1).

We split the summation into two intervals: 1 ≤ qn < (log x)C and (log x)C ≤
qn < x. So,∑

qn<x

π(x; qn, 1) =
∑

qn<(log x)C

π(x; qn, 1) +
∑

(log)C≤qn<x

π(x; qn, 1).

Using Theorem 2.1,∑
qn<(log x)C

π(x; qn, 1) =
∑

qn<(log x)C

(
x

ϕ(qn) log x
+O

(
x

logB x

))

=
x

log x

∑
qn<(log x)C

1

qn−1(q − 1)
+O

(
x log log x

logB x

)

=
q

(q − 1)2
· x

log x
(1 +O(log−C x)) +O

(
x log log x

logB x

)
=

q

(q − 1)2
· x

log x
+O

(
x log log x

logB x

)
,

where B is the constant from Theorem 2.1. Also,∑
(log x)C≤qn<x

π(x; qn, 1) ≤
∑

(log x)C≤qn<x

x

qn
= O

(
log x

x

(log x)C

)
= O

(
x

logC−1 x

)
.

Since B > C + 1, the lemma follows. �

For convenience, let us define T (a, b; c) as follows.

Definition 2.5. Define T (a, b; c) by

T (a, b; c) =
ϕ(c!)

ϕ(a!)ϕ(b!)
.

3. Pairs (a, b) such that r(a, b) > 1

In this section, we will prove Theorem 1.2.

Lemma 3.1. Let A be any constant. If a and b are positive integers such that
b ≥ a > b

(log b)A
, then r(a, b) > 1 for all sufficiently large b.
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Proof. Set c = a + b. We want to prove that T (a, b; c) is not an integer for all
sufficiently large b. By routine manipulations, we obtain that

T (a, b; c) =

(
a+ b

a

)∏
p≤a

p

p− 1

∏
b<p≤c

p− 1

p
.

We consider the largest power of 2 dividing T (a, b; c) and claim that it is negative
for all large b. Using Theorem 2.3, we know that ν2

((
a+b
a

))
is the number of

carries in the base-2 addition of a and b, which is at most 1 + log2 b. Therefore,
by Lemma 2.4, we have

ν2(T (a, b; c)) = 2

(
c

log c
− a

log a
− b

log b

)
+O

(
b

logK b

)
� 2b

logK−1 b
+ 2

(
a+ b

log(a+ b)
− a

log a
− b

log b

)
< 2

(
b

logK−1 b
+

a

log(a+ b)
− a

log a

)
.

Since b/a < logA b, the above expression is less than

2a

(
1

logK−1−A b
+

1

log(a+ b)
− 1

log a

)
.

It is routine to check that 1
log(a+b)

− 1
log a

is increasing in a ∈ (0,∞). Hence, as

a ≤ b, the above expression is bounded above by

2a

(
1

logK−1−A b
+

1

log b+ log 2
− 1

log b

)
< − δa

log2 b

for some positive constant δ, provided K − 1− A > 2, which can be ensured by
taking K large. And the proof is complete. �

With Lemma 3.1 in hand, it is easy to prove that the density of pairs (a, b)
such that r(a, b) > 1 is 1. The proportion of pairs (a, b) such that a = b is 0, so
we can ignore them. It suffices to prove that the proportion of pairs (a, b) with
a < b and r(a, b) > 1 is 1

2
. Number of pairs (a, b) such that 1 ≤ a < b ≤ N and

r(a, b) > 1 is at least

N∑
b=N0

(
(b− 1)− b

(log b)A

)
>
N(N − 1)

2
− N2

(logN)A
+O(1)

= N2

(
1

2
− 1

2N
− 1

(logN)A
+O

(
1

N2

))
,

where N0 is some constant only dependent on a and A. Thus, the density of such
pairs is 1

2
, proving Theorem 1.2.
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4. The Limit Inferior

The proof of Theorem 1.3 has two steps. First, we need to prove that it is
at least 1, and then show that there are arbitrarily large a and b such that
r(a, b) ≤ 1. The following result implies that the limit inferior is at least 1.

Lemma 4.1. Let A be any real constant. If a and b are positive integers with
a ≤ b, then c(a, b) ≥ a+ b− b

logA b
for all sufficiently large b.

Proof. Assume the contrary that c = c(a, b) ≤ a+b− b
logA b

is true infinitely often.

We calculate ν2 of T (a, b; c) and claim that it is negative for all large b, which
would contradict the assumption that T (a, b; c) is an integer. From Theorem 2.2,
we have that ν2(n!) = n + O(log n). Note that b ≤ c ≤ a + b ≤ 2b. By Lemma
2.4,

ν2(T (a, b; c)) =ν2(c!)− ν2(a!)− ν2(b!) + 1 + ν2

( ∏
b<p≤c

(p− 1)

)

− ν2

(∏
p≤a

(p− 1)

)

=c− a− b+ 2

(
c

log c
− a

log a
− b

log b

)
+O

(
b

logK b

)
for some constant K where we choose K > A. Note that

c

log c
− a

log a
− b

log b
≤ c

log b
− a

log a
− b

log b

=
c− b
log b

− a

log a

≤ c− b− a
log a

< 0.

Therefore,

ν2(T (a, b; c)) ≤ − b

logA b
+O

(
b

logK b

)
.

Since K > A, the above quantity is negative for all sufficiently large b, which
is a contradiction to the supposition that T (a, b; c) is an integer. The proof is
complete. �

By Lemma 4.1, we see that

r(a, b) ≥ 1− b

(a+ b) logA b
≥ 1− 1

2 logA b

for all sufficiently large b. It is now evident that

lim inf
a,b→∞

r(a, b) ≥ 1.
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What remains now to be proven is that there exist arbitrarily large a and
b such that r(a, b) ≤ 1. Indeed, T (a, ϕ(a!) − 1;ϕ(a!)) = 1 for all a ≥ 4, so,
r(n, ϕ(n!)− 1) < 1 for all n ≥ 4. This completes the proof of Theorem 1.3.

However, we prove the following result, which says that, given a, many b satisfy
r(a, b) ≤ 1. The proof also demonstrates a natural way to construct such pairs.

Proposition 4.2. Let a be a fixed positive integer. A positive proportion of
positive integers b satisfy r(a, b) ≤ 1.

Proof. We provide a way to construct such b. At the end, it will be clear that we
can ensure b ≥ a, so let us assume b ≥ a from now onwards. Recall that

T (a, b; a+ b) =

(
a+ b

a

)∏
p≤a

p

p− 1

∏
b<p≤a+b

p− 1

p
.

Set D =
∏

p≤a(p − 1). Clearly,
∏

b<p≤a+b p divides
(
a+b
a

)
, and D is relatively

prime to
∏

b<p≤a+b p. Therefore, it suffices to prove that there exist infinitely

many b such that D divides
(
a+b
a

)
. Let the prime factorisation of D be

∏m
i=1 q

αi
i .

By Theorem 2.3, we want the addition of a and b in base-qi to have at least αi
carries for each i = 1, 2, . . . ,m. Therefore, we choose b such that b ≡ −a (mod qαi

i )
for each i = 1, 2, . . . ,m, and we take

b = k
m∏
i=1

qαi
i − a = k

∏
p≤a

(p− 1)− a

for any positive integer k such that b ≥ a. Thus, the proportion of positive
integers b such that r(a, b) ≤ 1 is positive. �

Remark 4.3. It can be noted that the size of b obtained in the above proof is
around exp a(1 + o(1)), and the proportion of such b is at least exp a(−1 + o(1)).

5. Upper bound on r(a, b)

In this section, we prove Theorem 1.4.

5.1. Setup. Set c = a+ b+
⌊
a+b
8

⌋
. Without loss of generality, assume a ≤ b. We

wish to prove that T (a, b; c) is an integer for all large a and b. It is easy to see
that

T (a, b; c) =

(
a+ b

a

)
(a+ b+ 1) · · · (a+ b+

⌊
a+b
8

⌋
)
∏
p≤a

p

p− 1

∏
b<p≤c

p− 1

p
.

For brevity, call the above expression T . We prove that T is an integer by showing
that νq(T ) ≥ 0 for all primes q. It is clear that νq(T ) ≥ 0 for all q > a. So, let
us assume that q ≤ a for the rest of the argument. We split our proof into three
cases: q ≤ 7, q ∈ [8, a1/2] and q ∈ (a1/2, a]. Take a > 64 so that the intervals do
not overlap.
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5.2. Bounding νq(T ) for q ≤ 7. This case is straightforward using Lemma 2.4.
We have

νq(T ) ≥ νq((a+ b+ 1) · · · (a+ b+
⌊
a+b
8

⌋
))− νq

(∏
p≤a

(p− 1)

)

≥ 1

q

⌊
a+ b

8

⌋
+O

(
a

log a

)
,

which is positive for all large b as a ≤ b.

5.3. Bounding νq(T ) for q ∈ [8, a1/2]. In this case, the estimates of Lemma 2.4
do not work because the error terms get large as q gets big. Hence, we require

an alternative bound for νq

(∏
p≤a(p− 1)

)
, which is stated as follows.

Lemma 5.1. If q > 7, then

νq

(∏
p≤a

(p− 1)

)
≤ 0.23a

q − 1
+

7 log a

log q
.

To prove this, we use the following preliminary lemma.

Lemma 5.2. Let d > 7 be a positive integer relatively prime to 3, 5 and 7. Then,
the number of primes in {d+ 1, 2d+ 1, 3d+ 1, . . . , nd+ 1} is at most 0.46n+ 7.

Proof. The proof is just a routine application of Inclusion-Exclusion principle.
The number of elements in the set divisible by some positive integer k is either⌊
n
k

⌋
or
⌈
n
k

⌉
. Applying Eratosthenes’ sieve with respect to primes 3, 5 and 7, the

number of primes in the set is at most

n−
⌊n

3

⌋
−
⌊n

5

⌋
−
⌊n

7

⌋
+
⌈ n

15

⌉
+
⌈ n

21

⌉
+
⌈ n

35

⌉
−
⌊ n

105

⌋
< 0.46n+ 7,

as desired. �

Proof of Lemma 5.1. Similar to the proof of Lemma 2.4, by a double counting
argument and using Lemma 5.2,

νq

(∏
p≤a

(p− 1)

)
=
∑

2qm<a

π(a; 2qm, 1)

≤
∑

2qm<a

(
0.46a

2qm
+ 7

)
<

0.23a

q − 1
+

7 log a

log q
,

as desired. �
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By a standard application of Theorem 2.2,

νq((a+ b+ 1) · · · (a+ b+
⌊
a+b
8

⌋
)) ≥ νq(

⌊
a+b
8

⌋
!)

≥ 1

q − 1

⌊
a+ b

8

⌋
− log(a+ b)

log q
+O

(
1

log q

)
≥ a+ b

8(q − 1)
− log b

log q
+O

(
1

log q

)
.

Therefore,

νq(T ) ≥ a+ b

8(q − 1)
− log b

log q
+O

(
1

log q

)
−
(

0.23a

q − 1
+

7 log a

log q

)
.

Since a ≤ b and q ≤ a1/2, we have

νq(T ) ≥ 0.02a

q − 1
+

b− a
8(q − 1)

− 8 log b

log q
+O

(
1

log q

)
≥ 0.02

(
a1/2 +

b− a
400(q − 1)

− δ log b

)
for some positive constants δ. Note that the above expression is non-negative if
a > δ2 log2 b. Again, if a < δ2 log2 b, we see that b−a

400(q−1) is greater than δ log b for

all sufficienlty large b. Thus, νq(T ) ≥ 0 and this case is complete.

5.4. Bounding νq(T ) for q ∈ (a1/2, a]. Estimates like Lemma 2.4 and Lemma
5.1 are not suitable as the margin for slack is quite thin in this case. A careful
analysis involving sharp bounds is required. Note that

νq

(∏
p≤a

(p− 1)

)
= π(a; 2q, 1).

So, we are interested in upper bounding π(a; 2q, 1) sharply.

Lemma 5.3. Let q > 7 be a prime. The number of primes in {2q + 1, 4q +
1, . . . , 2qk+ 1} is at most

⌊
k
2

⌋
+ 1, where equality can occur if k = 4 and q = 11.

Proof. By Lemma 5.2, the number of primes in the set is at most 0.46k+7, which
is less than or equal to

⌊
k
2

⌋
+1 for all k ≥ 174. We are going to use computational

aids for the rest of k. Fix some k ≤ 173. Consider the aforementioned set modulo
3 · 5 · 7 = 105. Obviously, q can only be congruent to residues relatively prime
to 105. We check all such residues one by one. A number in the set cannot be a
prime if it is not relatively prime to 105. This procedure can be automated with
a naive PARI/GP [9] script for all k ≤ 173, completing the proof. �

Similar to the previous cases, note that

νq

(⌊
a+ b

8

⌋
!

)
≥
⌊

1

q

⌊
a+ b

8

⌋⌋
≥
⌊
a

4q

⌋
as a ≤ b. And by Lemma 5.3,

π(a; 2q, 1) ≤
⌊

1

2

⌊
a

2q

⌋⌋
+ 1 =

⌊
a

4q

⌋
+ 1,
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where we use the basic fact that
⌊
a
4q

⌋
=
⌊
1
2

⌊
a
2q

⌋⌋
. Thus,

νq(T ) ≥ νq

(⌊
a+ b

8

⌋
!

)
+ νq

(∏
p≤a

p

p− 1

)

≥
⌊
a

4q

⌋
+ 1−

(⌊
a

4q

⌋
+ 1

)
= 0,

and the proof of Theorem 1.4 is complete.

6. Does the limit exist?

Until now, we have proved results on the inferior and superior limits. A ques-
tion that arises naturally is whether the limit exists. Numerical evidence suggests
that the sequence r(a, b) keeps on fluctuating (see Figure 2).

In this section, we provide a convincing argument for the non-convergence of
the sequence using Dickson’s conjecture and prove Theorem 1.5.

Hypothesis 6.1 (Dickson’s Conjecture). Let a1, a2, . . . , ak be k integers and
b1, b2, . . . , bk be k positive integers. There are infinitely many positive integers n
for which all the elements in the set {a1 + b1n, a2 + b2n, . . . , ak + bkn} are primes,
unless there is a congruence condition preventing this, i.e., there doesn’t exist a
prime q (necessarily at most k) such that the product (a1+b1n)(a2+b2n) · · · (ak+
bkn) is divisible by q for all n ∈ {0, 1, . . . , q − 1}.

Let q > 17 be a sufficiently large prime such that 2q + 1, 6q + 1 and 8q + 1
are primes but iq + 1 is not prime for each i ∈ {10, 12, 14, 16, 18}. Existence of
infinitely many such primes q can be proven under Dickson’s conjecture.

Lemma 6.2. Assuming Dickson’s conjecture, there exist infinitely many primes
q such that 2q + 1, 6q + 1 and 8q + 1 are primes but iq + 1 is not prime for each
i = 10, 12, 14, 16, 18.

Proof. The main idea is to find one such prime q and apply Chinese Remainder
Theorem. It is easy to see that q must be greater than 7. Observe that q ≡
2 (mod 3) and q ≡ 1 (mod 5). Therefore, iq + 1 is divisible by 3 for each
i ∈ {10, 16}, and 14q + 1 is divisible by 5. It is easily verified that q = 131
satisfies the conditions of the statement. Indeed,

2 · 131 + 1 = 263, 6 · 131 + 1 = 787, 8 · 131 + 1 = 1049,

12 · 131 + 1 = 112 · 13, 18 · 131 + 1 = 7 · 337.

Consider the system of congruences

q ≡ 131 (mod 11), q ≡ 131 (mod 7).

This is solved by q ≡ 54 (mod 77). So, if q is of the form 77`+ 54, then 12q + 1
and 18q+ 1 are not primes. By Dickson’s conjecture, there exist infinitely many
` such that 77` + 54, 2(77` + 54) + 1, 6(77` + 54) + 1 and 8(77` + 54) + 1 are
primes. No modular conditions are preventing this because of the way we choose
q. The proof is complete. �
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Take n = 8q + 1 and let c(n, n) = 2n+m for some integer m. By Lemma 3.1,
it is clear that m is positive. Let us assume for now that m < n−9

4
; it will be

clear later why we are assuming this. Recall that

T (n, n; 2n+m) =

(
2n

n

)
(2n+ 1)(2n+ 2) · · · (2n+m)

∏
p≤n

p

p− 1

∏
n<p≤2n+m

p− 1

p
.

We consider νq of the above expression. Since q > 17, and the base-q repre-
sentation of n is 81, hence there are no carries in the addition n + n in base-q.
Therefore, by Theorem 2.3, q does not divide

(
2n
n

)
. Observe that

νq

(∏
p≤n

p

p− 1

)
≤ −2,

and, whether q divides
∏

n<p≤2n+m(p− 1) or not depends on how many of 9q +
1, 10q+1, . . . , 18q+1 are primes. Clearly, 9q+1, 11q+1, 13q+1, 15q+1 and 17q+1
are even. The remaining iq + 1 for each i ∈ {10, 12, 14, 16, 18} are not primes
by assumption. Therefore, the product

∏
n<p≤2n+m(p − 1) has no contribution

to the exponent of q. Lastly, the set {2n + 1, 2n + 2, . . . , 2n + m} is equivalent
to {3, 4, . . . ,m+ 2} when considered modulo q. Note that 2n+ (q − 2) = 17q is
not divisible by q2. Therefore, for T (n, n; 2n+m) to be an integer, we must have
m + 2 ≥ 2q, which implies that m ≥ n−9

4
. This is a contradiction to our initial

assumption. Concluding,

c(n, n) ≥ 2n+
n− 9

4
=

9n

4
− 9

4
.

Thus,

r(n, n) ≥ 9

8
− 9

8n
,

completing the proof of Theorem 1.5.

Remark 6.3. By a quantitative version of Dickson’s conjecture, known in its
very general form as Bateman-Horn conjecture, the number of integers in [1, x]
which satisfy the condition of Theorem 1.5 is of order at least x/(log x)4.
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[3] P. Erdős. ‘Aufgabe 557’. Elemente. Math. 23 (1968), 111–113.
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