
ON THE GREATEST COMMON DIVISOR OF n AND

THE nTH FIBONACCI NUMBER, II

ABHISHEK JHA AND CARLO SANNA†

Abstract. Let A be the set of all integers of the form gcd(n, Fn), where n is a positive
integer and Fn denotes the nth Fibonacci number. Leonetti and Sanna proved that A has
natural density equal to zero, and asked for a more precise upper bound. We prove that

#
(
A ∩ [1, x]

)
� x log log log x

log log x

for all sufficiently large x.

1. Introduction

Let (un) be a nondegenerate linear recurrence with integral values. Arithmetic relations
between n and un have been studied by several authors. For example, the set of positive
integers such that n divides un has been studied by Alba González, Luca, Pomerance, and
Shparlinski [2], assuming that the characteristic polynomial of (un) is separable, and by André-
Jeannin [3], Luca and Tron [11], Sanna [17], and Somer [21], when (un) is a Lucas sequence.
Furthermore, Sanna [19] showed that the set of natural numbers n such that gcd(n, un) = 1
has a natural density (see [13] for a generalization). Mastrostefano and Sanna [12, 18] studied
the moments of log

(
gcd(n, un)

)
and gcd(n, un) when (un) is a Lucas sequence, and Jha and

Nath [7] performed a similar study over shifted primes. (See also the survey of Tron [23] on
greatest common divisors of terms of linear recurrences.)

Let (Fn) be the linear recurrence of Fibonacci numbers, which is defined by F1 = F2 = 1
and Fn+2 = Fn+1 + Fn for every positive integer n. Sanna and Tron [20] proved that, for
each positive integer k, the set of positive integers n such that gcd(n, Fn) = k has a natural
density, which is given by an infinite series. Kim [9] and Jha [6] obtained formally analogous
results in cases of elliptic divisibility sequences and orbits of polynomial maps, respectively.
Let A be the set of numbers of the form gcd(n, Fn), for some positive integer n. Leonetti and
Sanna [10] provided an effective method to enumerate the elements of A in increasing order.
In particular, the first elements of A are

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, . . .

see [1, A285058] for more terms. Then they proved that

(1) #A(x)� x

log x

for all x ≥ 2. Their approach relied on a result of Cubre and Rouse [4], which in turn follows
from Galois theory and the Chebotarev density theorem. Later, Jha and Sanna [8, Proposition
1.4] obtained an elementary proof as an application of related arithmetic problem over shifted
primes. Leonetti and Sanna [10] also gave the upper bound #A(x) = o(x) as x → +∞; and
asked for a more precise estimate. We prove the following upper bound on #A(x).

Theorem 1.1. We have

#A(x)� x log log log x

log log x
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for all sufficiently large x.

In light of the gap between the upper bound of Theorem 1.1 and the lower bound (1) it is
natural to wonder which is the true order of #A(x). By performing some numerical experiments
(see Section 4 later), we found that #A(x) appears to be asymptotic to x/(log x)c, as x→ +∞,
for some constant c ≈ 0.63, see Figure 1. Of course, these kind of experiments has to be taken
with a grain of salt, since they cannot reveal slow-growing factors like log log x.

Figure 1. A plot of #A(x)/(x/(log x)c) for x up to 106.

Notation. For every set of positive integers S and for every x > 0, we define S(x) := S∩[1, x].
We employ the Landau–Bachmann “Big Oh” and “little oh” notation O and o, as well as the
associated Vinogradov symbols � and �. In particular, all of the implied constants are
intended to be absolute. We let Li(x) :=

∫ x
2 (log t)−1 dt denote the integral logarithm.

2. Preliminaries

For each positive integer n, let z(n) be the rank of appearance of n, that is, z(n) is the
smallest positive integer k such that n divides Fk. It is well known that z(n) exists. Moreover,
put `(n) := lcm

(
n, z(n)

)
and g(n) := gcd

(
n, Fn

)
. The next lemma collects some elementary

properties of z, `, and g.

Lemma 2.1. For all positive integer m,n and all prime numbers p, we have:

(i) z(m) | z(n) whenever m | n.

(ii) n | g(m) if and only if `(n) | m.

(iii) n ∈ A if and only if n = g
(
`(n)

)
.

(iv) m | n whenever `(m) | `(n) and n ∈ A.

(v) z(p) | p− (p/5) where (p/5) is a Legendre symbol.
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(vi) z(pn) = pmax(n−e(p) , 0) z(p), where e(p) := νp(Fz(p)) ≥ 1 and νp is the usual p-adic
valuation.

(vii) `(pn) = pnz(p) if p 6= 5, and `(5n) = 5n.

Proof. For (i), (ii). and (iii), see [10, Lemma 2.1 and 2.2]. Fact (iv) follows easily from (ii)
and (iii). Facts (vi) and (v) are well known (cf. [11, Lemma 1]). Fact (vii) follows quickly
from (vi) and (v). �

For each positive integer d, let Pd be the set of prime numbers p such that d divides z(p).
Cubre and Rouse [4] proved that #Pd(x) ∼ δ(d) Li(x), as x→ +∞, where

δ(d) :=
1

d

∏
p | d

(
1− 1

p2

)−1
1 if 10 - d;

5/4 if d ≡ 10 (mod 20);

1/2 if 20 | d.
Sanna [16] extended this result to Lucas sequences (under some mild restrictions) and provided
also an error term. In particular, as a consequence of [16, Theorem 1.1], we have the following
asymptotic formula.

Lemma 2.2. There exists an absolute constant B > 0 such that

(2) #Pd(x) = δ(d) Li(x) +O

(
x

(log x)12/11

)
,

for all odd positive integers d and for all x ≥ exp(Bd40).

Proof. From [16, Theorem 1.1] we have that there exists an absolute constant B > 0 such that

#Pd(x) = δ(d) Li(x) +O

(
d

ϕ(d)
· x (log log x)ω(d)

(log x)9/8

)
,

for all odd positive integers d and for all x ≥ exp(Bd40), where ϕ(d) and ω(d) are the Euler
totient function and the number of prime factors of d, respectively. Note that we can assume
that B (and consequently x) is sufficiently large. In particular, we have that d ≤ (log x)1/40.
Put ε := 1/330. By the classic lower bound for ϕ(d) (see, e.g., [22, Ch. I.5, Theorem 5.6]) we
have that

d

ϕ(d)
� log log d� log log log x ≤ (log x)ε.

Recall that ω(d) ≤
(
1 + o(1)

)
log d/ log log d as d→ +∞ (see, e.g., [22, Ch. I.5, Theorem 5.5]).

Therefore, there exists an absolute constant C > 0 such that if d > C then

ω(d) ≤ (1 + ε)
log d

log log d
≤
(

1

40
+ 2ε

)
log log x

log log log x
,

and consequently (log log x)ω(d) ≤ (log x)
1
40

+2ε . Also, if d ≤ C then (log log x)ω(d) ≤ (log x)ε.
The claim follows. �

Remark 2.1. In Lemma 2.2 the exponent 12/11 can be replaced by 11/10 + ε, for every ε > 0,
assuming that x is sufficiently large depending on ε.

We also need an upper bound for #Pd(x).

Lemma 2.3. We have
#Pd(x)� x

ϕ(d) log(x/d)
for all positive integers d and for all x > d.

Proof. By Lemma 2.1(v), we have that

#Pd(x) ≤ 1 + #
{
p ≤ x : p ≡ ±1 (mod d)

}
� x

ϕ(d) log(x/d)
,

where we applied the Brun–Titchmarsh inequality [22, Ch. I.4, Theorem 4.16]. �
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Now we give an upper bound for the sum of reciprocals of primes in Pd.

Lemma 2.4. We have ∑
p∈Pd(x)

1

p
= δ(d) log log x+O

(
log(2d)

ϕ(d)

)
for all odd positive integers d and for all x ≥ 3.

Proof. First, suppose that x < exp(Bd40), where B is the constant of Lemma 2.2. Hence, we
have that

δ(d) log log x� log log x

d
� log(2d)

d
.

Moreover, by [15, Theorem 1 and Remark 1], we have that∑
p≤x

p≡±1 (mod d)

1

p
=

2 log log x

ϕ(d)
+O

(
log(2d)

ϕ(d)

)
.

This together with Lemma 2.1(v) yields that∑
p∈Pd(x)

1

p
≤ 1

d
+

∑
p≤x

p≡±1 (mod d)

1

p
� 1

d
+

log(2d)

ϕ(d)
.

Hence, the claim follows. Now suppose that x ≥ exp(Bd40). By partial summation, we have
that ∑

p∈Pd(x)

1

p
=

#Pd(x)

x
+

∫ x

1

#Pd(t)
t2

dt.

Obviously, #Pd(x)/x � 1/d by the trivial inequality. Thus it remains to bound the integral.
By Lemma 2.1(v), we have that∫ 2d

1

#Pd(t)
t2

dt ≤ 1

d2

∫ 2d−2

1
5 dt� 1

d
,

after noticing that #Pd(t) > 0 only if t ≥ d− 1. By Lemma 2.3, we have that∫ exp(Bd40)

2d

#Pd(t)
t2

dt�
∫ exp(Bd40)

2d

dt

ϕ(d) t log(t/d)
=

[
log log(t/d)

ϕ(d)

]exp(Bd40)
t=2d

� log d

ϕ(d)
.

By Lemma 2.2, we have that∫ x

exp(Bd40)

#Pd(t)
t2

dt =

∫ x

exp(Bd40)

δ(d) Li(t)

t2
dt+O

(∫ x

exp(Bd40)

dt

t(log t)12/11

)

= δ(d)

[
log log t− Li(t)

t

]x
t=exp(Bd40)

+O

(
1

d40/11

)
= δ(d) (log log x+O(log d)) +O

(
1

d40/11

)
= δ(d) log log x+O

(
log d

d

)
.

Putting these together, the claim follows. �

The following sieve result is a special case of [5, Theorem 7.2] (cf. [14, Lemma 2.2]).

Lemma 2.5. We have

#{n ≤ x : p | n⇒ p /∈ P} � x
∏

p∈P(x)

(
1− 1

p

)
,

for all x ≥ 2 and for all sets of prime numbers P.
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3. Proof of Theorem 1.1

Suppose that x > 0 is sufficiently large, and put

k :=

⌊
1

log 5
log

(
25

24 log 5
· log log x

log log log x

)⌋
and d := 5k. Note that δ(d) = 5−k · 25/24. Hence, we get that

log

(
log d

δ(d)

)
= k log 5 + log k + log

(
24 log 5

25

)
≤ log log log x.

Therefore, we have that (log d)/δ(d) ≤ log log x and

(3) (log x)δ(d) ≥ d� log log x

log log log x
.

We split A into two subsets: A1 is the subset of A consisting of integers without prime factors
in Pd, and A2 := A \ A1.

First, we give an upper bound on #A1(x). By Lemma 2.5 and Lemma 2.4, we get that

(4) #A1(x)� x
∏

p∈Pd(x)

(
1− 1

p

)
� x exp

− ∑
p∈Pd(x)

1

p

� x

(log x)δ(d)
,

where we also used the inequality 1− x ≤ exp(−x), which holds for x ≥ 0.
Now we give an upper bound on #A2(x). If n ∈ A2 then n has a prime factor p ∈ Pd.

Hence, we have that p | n and d | z(p). Thus, by Lemma 2.1(i), we get that z(p) | z(n) and
so d | `(n). Recalling that d = 5k, by Lemma 2.1(vii) we have that `(d) = d. Hence, we get
that `(d) | `(n) and, by Lemma 2.1(iv), it follows that d | n. Thus all the elements of A2 are
multiples of d. Consequently, we have that

(5) #A2(x) ≤ x

d
.

Therefore, putting together (4) and (5), and using (3), we obtain that

#A(x) = #A1(x) + #A2(x)� x

(log x)δ(d)
+
x

d
� x log log log x

log log x
,

as desired. The proof is complete.

4. Numerical computations

We computed the elements of A ∩ [1, 106] by using a program written in C that employs
Lemma 2.1(iii). Note that computing g

(
`(n)

)
directly as gcd

(
`(n), F`(n)

)
would be prohibitive,

in light of the exponential grown of Fibonacci numbers. Instead, we used the fact that

g
(
`(n)

)
= gcd

(
`(n), F`(n) mod `(n)

)
,

and we computed Fibonacci numbers modulo an integer by efficient matrix exponentiation.
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