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Abstract

Let (Fn) be the sequence of Fibonacci numbers and, for each positive integer k , let Pk
be the set of primes p such that gcd(p− 1, Fp−1) = k . We prove that the relative density
r(Pk ) of Pk exists, and we give a formula for r(Pk ) in terms of an absolutely convergent
series. Furthermore, we give an effective criterion to establish if a given k satisfies
r(Pk ) > 0, and we provide upper and lower bounds for the counting function of the
set of such k ’s. As an application of our results, we give a new proof of a lower bound
for the counting function of the set of integers of the form gcd(n, Fn), for some positive
integer n. Our proof is more elementary than the previous one given by Leonetti and
Sanna, which relies on a result of Cubre and Rouse.
Keywords: Fibonacci numbers, Greatest common divisor, Least common multiple,
Primes
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1 Introduction
Let (un) be anon-degenerate linear recurrencewith integral values. Several authors studied
the arithmetic relations between un and n. For instance, under the mild hypothesis that
the characteristic polynomial of (un) has only simple roots, AlbaGonzález et al. [1] studied
the set of positive integers n such that un is divisible by n. The same set was also studied
by André-Jeannin [2], Luca and Tron [12], Sanna [16], and Somer [20], in the special case
in which (un) is a Lucas sequence. Furthermore, Sanna [17] studied the set of natural
numbers n such that gcd(n, un) = 1 (see [14] for a generalization, and [23] for a survey on
g.c.d.’s of linear recurrences). Similar problems, with (un) replaced by an elliptic divisibility
sequence or by the orbit of a polynomial map, were also studied [3,5,6,8,9,19].
Let (Fn) be the linear recurrence of Fibonacci numbers, which is defined as usual by

F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all positive integers n. For every positive integer k ,
define the following set of natural numbers

Ak := {n ≥ 1 : gcd(n, Fn) = k},
Recall that the natural density d(S) of a set of positive integers S is defined as the limit
of the ratio #

(S ∩ [1, x]
)
/x as x → +∞, whenever this limit exists. Sanna and Tron [18]

proved that each Ak has a natural density, which can be written as an infinite series, and
they provided an effective criterion to determine if such density is positive.
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We consider similar results but for the set of shifted primes p − 1. (Throughout, we
reserve the letter p for prime numbers.) Shifted primes already make their appearance in
relation to Fibonacci numbers. For instance, it is well known that p divides Fp−1 for every
prime number p ≡ ±1 (mod 5). For each integer k ≥ 1, define the following set of prime
numbers

Pk := {p : gcd(p − 1, Fp−1) = k}.

Recall that the relative density r(P) of a set of prime numbers P is defined as the limit of
the ratio #(P ∩ [1, x])/π (x) as x → +∞, whenever this limit exists, where π (x) denotes
the number of primes not exceeding x. Let z(m) denote the rank of appearance, or entry
point, of a positive integer m in the sequence of Fibonacci numbers, that is, the smallest
positive integer n such that m divides Fn. It is well known that z(m) exists. Also, let
�(m) = lcm

(
m, z(m)

)
.

Our first result establishes the existence of the relative density of Pk and provides a
criterion to check if such a density is positive.

Theorem 1.1 For each positive integer k, the relative density of Pk exists. Moreover, if
gcd

(
�(k), F�(k)

) �= k, or if 2 � �(k) and �(pk) = 2 �(k) for some prime number p with p � k,
then Pk ⊆ {2}. Otherwise, we have that r(Pk ) > 0.

For instance, k = 17 is the smallest positive integer such that d(Ak ) > 0, since
gcd

(
�(k), F�(k)

) = k (see Lemma 3.3 below) but r(Pk ) = 0, since �(k) = 153 is odd
and �(pk) = 2 �(k) for p = 2.
Our second result gives an explicit expression for the relative density of Pk in terms of

an absolutely convergent series.

Theorem 1.2 For each positive integer k, the relative density of Pk is

r(Pk ) =
∞∑

d = 1

μ(d)
ϕ(�(dk))

,

where μ is the Möbius function, ϕ is the Euler totient function, and the series converges
absolutely.

Leonetti and Sanna [11] proved the following upper and lower bounds for the counting
function of the setA := {gcd(n, Fn) : n ≥ 1}.
Theorem 1.3 We have

x
log x

	 #
(A ∩ [1, x]

) = o(x), (1)

as x → +∞.

As an application of Theorem 1.1, we provide an alternative proof of the lower bound
in (1). We remark that our proof uses quite elementary methods, while Leonetti and
Sanna’s proof relies on a result of Cubre and Rouse [4], which in turn is proved by Galois
theory and Chebotarev’s density theorem.
LetK be the set of positive integers k such that r(Pk ) > 0.We have the following upper

and lower bounds for the counting function of K.
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Proposition 1.4 We have
x

log x
	 #

(K ∩ [1, x]
) = o(x),

as x → +∞.

We remark that both Theorems 1.1 and 1.2 can be generalized to non-degenerate
Lucas sequences, that is, integer sequences (un) such that u1 = 1, u2 = a1, and un =
a1un−1 + a2un−2, for every integer n ≥ 2, where a1, a2 are non-zero relatively prime
integers such that the ratio of the roots ofX2−a1X−a2 is not a root of unity.We decided
to focus on the sequence of Fibonacci numbers in order to simplify the exposition.
A generalization in another direction could be studying the sets of primes

P (s)
k := {p : gcd(p + s, Fp+s) = k},

for integers k ≥ 1 and s.

2 Preliminaries on primes in certain residue classes
We shall need amild generalization (Theorem 2.2 below) of a result of Leonetti and Sanna
[10] on primes in certain residue classes. First, we have to introduce some notation. For
all x ≤ y, let �x, y� := [x, y] ∩ N. For vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) in
Nd , let ‖x‖ := x1 · · · xd , �x, y� := �x1, y1� × · · · × �xd, yd�, xy := (x1y1, . . . , xdyd), and
x/y := (x1/y1, . . . , xd/yd). Let 0, respectively 1, be the vector of Nd with all components
equal to 0, respectively 1. For everym = (m1, . . . , md) ∈ Nd , write x ≡ y (mod m) if and
only if xi ≡ yi (mod mi) for each i ∈ �1, d�, and write instead x �≡ y (mod m) if and only
if xi �≡ yi (mod m) for at least one i ∈ �1, d�.

Lemma 2.1 Let d be a positive integer and let c1, . . . , ck ,d ∈ Nd be vectors such that
c1 · · · ck ≡ 0 (mod d) and d ≡ 0 (mod ci) for each i ∈ �1, k�. Then the set X of all
x ∈ �1,d� such that x �≡ 0 (mod ci) for each i ∈ �1, k� satisfies

#X ≥ ‖d‖ ·
k∏

i= 1

(
1 − 1

‖ci‖
)
.

Proof See [10, Lemma 2.1]. �

For all positive integers a0, . . . , ak , let Q(a0, . . . , ak ) be the set of primes p such that
p ≡ 1 (mod a0) and p �≡ 1 (mod ai) for every i ∈ �1, k�.

Theorem 2.2 Let a0, . . . , ak be positive integers with a0 | ai for each i ∈ �1, k�. Then the
relative density ofQ := Q(a0, . . . , ak ) exists and satisfies

r(Q) ≥ 1
ϕ(a0)

k∏

i= 1

(
1 − ϕ(a0)

ϕ(ai)

)
. (2)

Proof Wegeneralize the proof of [10, Theorem1.2], which corresponds to the special case
a0 = 1. In fact, we proceed almost exactly as in the proof of [10, Theorem 1.2].We decided
to include everything (and not just the small variations) for the sake of completeness. Let
L := lcm(a0, . . . , ak ) = pe11 · · · pedd where p1 < · · · < pd are primes and e1, . . . , ed are
positive integers. Also, let S be the set of integers n ∈ [1, L] such that: gcd(n, L) = 1, n ≡ 1
(mod a0), and n �≡ 1 (mod ai) for every i ∈ �1, k�. By Dirichlet’s theorem on primes in
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arithmetic progressions, we have that

r(Q) = lim
x→+∞

#(Q ∩ [1, x])
π (x)

= lim
x→+∞

∑

n∈S

#{p ≤ x : p ≡ n (mod L)}
π (x)

= #S
ϕ(L)

. (3)

Hence, the relative density ofQ exists. Let us give a lower bound on #S .
First, assume that 8 � L. Let gj be a primitive root modulo pejj , for each j ∈ �1, d�.

Note that g1 exists when p1 = 2 since e1 ≤ 2. Put b := (
ϕ(pe11 ), . . . ,ϕ(pedd )

)
. By the

Chinese remainder theorem, each n ∈ �1, �� with gcd(n, L) = 1 is uniquely determined
by a vector y(n) = (y1(n), . . . , yd(n)) ∈ �1, b� such that n ≡ gyj(n)j (mod pejj ) for each
j ∈ �1, d�. Write ai = pαi,1

1 · · · pαi,d
d , where αi,1, . . . ,αi,d ≥ 0 are integers, and define

ai :=
(
ϕ(pαi,1

1 ), . . . ,ϕ(pαi,d
d )

)
for each i ∈ �0, k�. Also, put ci = ai/a0 for every i ∈ �0, k�,

d := b/a0, and let X be defined as in Lemma 2.1. At this point, it follows easily that
n ∈ S if and only if y(n) ≡ 0 (mod a0) and y(n) �≡ 0 (mod ai) for each i ∈ �1, k�.
Therefore, the map n �→ y(n)/a0 is a bijection S → X and, consequently, #S = #X .
Since ‖d‖ = ϕ(L)/ϕ(a0), ‖ci‖ = ϕ(ai)/ϕ(a0), c1 · · · ck ≡ 0 (mod d), and d ≡ 0 (mod ci)
for each i ∈ �1, k�, we can apply Lemma 2.1, which gives a lower bound on #X , that is, on
#S . Then (3) and the lower bound on #S yield (2).
Now let us consider the case in which 8 | L. This is a bit more involved since there are

no primitive roots modulo 2e, for every integer e ≥ 3. However, the previous arguments
still work by changing ai and b with

ai :=
(
2max(0,αi,1−1)−max(0,αi,1−2), 2max(0,αi,1−2),ϕ(pαi,2 ), . . . ,ϕ(pαi,d )

)

and

b = (
2, 2e1−2,ϕ(pe22 ), . . . ,ϕ(pedd )

)
.

Then each n ∈ �1, �� with gcd(n, L) = 1 is uniquely determined by a vector y(n) =
(y0(n), . . . , yd(n)) ∈ �1, b� such that n ≡ (−1)y0(n)5y1(n) (mod 2e1 ) and n ≡ gyj(n)j
(mod pejj ) for each j ∈ �2, d�. The rest of the proof proceeds similarly to the previous
case. �
For all positive integers a0, a1, . . . , letQ(a0, a1, . . . ) := ⋂

k ≥ 1Q(a0, . . . , ak ).

Corollary 2.3 If a0, a1, . . . is a sequence of positive integers such that a0 | ai for each integer
i ≥ 1 and the series

∑
i≥ 1 1/ϕ(ai) converges, then the relative density ofQ := Q(a0, a1, . . . )

exists. Moreover, r(Q) = 0 if and only if there exists an integer i ≥ 1 such that ai = a0, or
ai = 2a0 and a0 is odd. In such a case, we have thatQ ⊆ {2}.
Proof If there exists an integer i ≥ 1 such that ai = a0, or ai = 2a0 and a0 is odd,
then it follows easily that Q ⊆ {2} and, consequently, r(Q) = 0. Hence, assume that no
such integer i exists. In particular, we have that ϕ(a0) < ϕ(ai) for every integer i ≥ 1.
From Theorem 2.2 we know that, for every integer k ≥ 1, the relative density of Qk :=
Q(a0, . . . , ak ) exists and

r := lim
k →+∞

r(Qk ) ≥ 1
ϕ(a0)

∞∏

i= 1

(
1 − ϕ(a0)

ϕ(ai)

)
> 0,
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where the infinite product converges to a positive number since
∑

i≥ 1 1/ϕ(ai) converges
and ϕ(a0)/ϕ(ai) < 1 for every integer i ≥ 1. Furthermore, for each ε > 0 and for every
sufficiently large positive integer k = k(ε), we have that

lim sup
x→+∞

∣∣∣
∣r − #(Q ∩ [1, x])

π (x)

∣∣∣
∣ < ε + lim sup

x→+∞
#
(
(Qk \ Q) ∩ [1, x]

)

π (x)

≤ ε + lim sup
x→+∞

#{p ≤ x : ∃j > k s.t. p ≡ 1 (mod aj)}
π (x)

≤ ε +
∑

j> k

1
ϕ(aj)

< 2ε.

Therefore, the relative density ofQ exists and, in fact, r(Q) = r > 0. �

3 Further preliminaries
The next lemma summarizes some basic properties of the Fibonacci numbers and the
arithmetic functions � and z.

Lemma 3.1 For all positive integers m, n and all prime numbers p, we have:

1. Fm | Fn whenever m | n.
2. gcd(Fm/Fn, Fn) | m/n whenever n | m.
3. m | Fn if and only if z(m) | n.
4. z(p) | p −

(p
5

)
where

(p
5

)
is the Legendre symbol.

5. m | gcd(n, Fn) if and only if �(m) | n.
6. �(lcm(m, n)) = lcm(�(m), �(n)).
7. �(p) = z(p)p for p �= 5, and �(5) = 5.
8. �(n) ≤ 2n2.

Proof Facts 1–4 are well known (for 2, see [21, Lemma 2]). Facts 5–7 follow easily from 3
and 4 and the definition of � (cf. [18, Lemma 2.1]). Finally, fact 8 follows easily from the
well-known inequality z(n) ≤ 2n (see, e.g., [15]). �
Now we state a result to establish ifAk �= ∅ and d(Ak ) > 0.

Lemma 3.2 Ak �= ∅ if and only if d(Ak ) > 0 if and only if gcd
(
�(k), F�(k)

) = k, for all
integers k ≥ 1.

Proof See [18, Theorem 1.3]. �

Lemma 3.3 Let k and n be positive integers. Suppose that Ak �= ∅. Then n ∈ Ak if and
only if �(k) | n and m � n for every

m ∈ {
p �(k) : p | k} ∪ {�(pk) : p � k}.

Proof See [18, Lemma 3.1]. �
We need some upper bounds for series involving �(n).

Lemma 3.4 We have
∑

n> y

1
�(n)

< exp
(−δ(log y)1/2(log log y)1/2

)
,

for all δ ∈ (
0, 1/

√
6
)
and y �δ 1.
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Proof See [13, Proposition 1.4]. �

Lemma 3.5 We have
∑

n> y

1
ϕ
(
�(n)

) 	 log log y
exp

(
δ(log y)1/2(log log y)1/2

) ,

for all δ ∈ (
0, 1/

√
6
)
and y �δ 1.

Proof From Lemma 3.4 it follows that

S(t) :=
∑

n≥ t

1
�(n)

< f (t) := exp
(−δ(log t)1/2(log log t)1/2

)
,

for all t �δ 1. By partial summation, we obtain that

∑

n≥ y

log log n
�(n)

= S(y) log log y +
+∞∫

y

S(t)
t log t

dt

< f (y) log log y +
+∞∫

y

f (t)
t log t

dt

	δ f (y) log log y −
+∞∫

y

f ′(t) dt

	 f (y) log log y.

Then, since ϕ(n) � n/log log n (see, e.g., [22, Chapter I.5, Theorem 4]) and �(n) ≤ 2n2

(Lemma 3.18) for all positive integers n, we have that
∑

n> y

1
ϕ
(
�(n)

) 	
∑

n> y

log log n
�(n)

	 f (y) log log y.

The claim follows. �
For every x > 0 and for all integers a and b, let π (x; b, a) be the number of primes p ≤ x

such that p ≡ a (mod b), and put also

�(x; b, a) := π (x; b, a) − π (x)
ϕ(b)

.

We need the following bounds for �(x; b, a).

Theorem 3.6 (Siegel–Walfisz) For every A > 0, we have,

�(x; b, a) 	 x
(log x)A

,

for all x �A 1 and for all relatively prime positive integers a, b with b ≤ (log x)A.

Proof See [7, Corollary 5.29]. �

Lemma 3.7 Let ε > 0. Then we have that

�(x; b, a) 	ε

x
ϕ(b) log x

,

for all x ≥ 2 and for all relatively prime positive integers a, b with b ≤ x1−ε .
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Proof From the Brun–Titchmarsh theorem [22, Theorem 9] we know that

π (x; b, a) 	 x
ϕ(b) log(x/b)

,

for all b < x. Hence, the condition b ≤ x1−ε and the upper bound π (x) 	 x/ log x yield
that

�(x; b, a) 	 π (x; b, a) + π (x)
ϕ(b)

	 x
ϕ(b) log(x/b)

+ x
ϕ(b) log x

	ε

x
ϕ(b) log x

,

as desired. �

4 Proof of Theorem 1.1
Let k be a positive integer. If Pk = ∅ then, obviously, the relative density of Pk exists and
is equal to zero. Hence, suppose that Pk �= ∅. In particular, Ak �= ∅, since p − 1 ∈ Ak
for every p ∈ Pk . Therefore, by Lemma 3.2, we have that gcd

(
�(k), F�(k)

) = k . Recall
the definition of Q(a0, a1, . . . ) given before Corollary 2.3. Define the sequence Mk =
m0, m1, . . . wherem0 < m1 < . . . are all the elements of

{
�(k)

} ∪ {
p �(k) : p | k} ∪ {

�(pk) : p � k
}
.

Then, from Lemma 3.3 and the definition of Q(Mk ), it follows that Pk = Q(Mk ). Fur-
thermore, by Lemma 3.5, we have that

∑

i≥ 0

1
ϕ(mi)

	k
∑

p

1
ϕ
(
�(pk)

) 	k
∑

p

1
ϕ
(
�(p)

) < +∞.

Hence, thanks to Corollary 2.3, we get that the relative density of Pk exists and, in partic-
ular, r(Pk ) = 0 if and only if Pk ⊆ {2} if and only if there exists an integer i ≥ 1 such that
mi = m0, or mi = 2m0 and m0 is odd. The first case is impossible, since the sequence
Mk is increasing. The second case is equivalent to 2 � �(k) and either p �(k) = 2 �(k), for
some prime number p with p | k , or �(pk) = 2 �(k), for some prime number p with p � k .
In turn, since k | �(k), this is equivalent to 2 � �(k) and �(pk) = 2 �(k) for some prime
number p with p � k . The proof is complete.

Remark 4.1 We remark that the convergence of the series
∑

p

1
ϕ
(
�(p)

)

admits a simpler proof than invoking Lemma 3.5 which we highlight below. Note that
�(p) � p z(p) � p log p due to Lemma 3.17. Thus, we have that

∑

p

1
ϕ
(
�(p)

) 	
∑

p

log log p
p z(p)

	
∑

p

log log p
p log p

< +∞

since ϕ(n) � n/log log n and �(n) ≤ 2n2 for all positive integers n, and the convergence
of last sum is standard .

5 Proof of Theorem 1.2
For each positive integer k , letRk be the set of prime numbers p such that:

(i) k | gcd(p − 1, Fp−1);
(ii) if q | gcd(p − 1, Fp−1) for some prime number q, then q | k .
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The essential part of the proof of Theorem 1.2 is the following formula for the relative
density ofRk .

Lemma 5.1 For all positive integers k, the relative density ofRk exists and

r(Rk ) =
∑

(d, k)= 1

μ(d)
ϕ
(
�(dk)

) , (4)

where the series is absolutely convergent.

Proof For every prime p and for every positive integer d, let us define

	(p, d) :=
⎧
⎨

⎩
1 if d | Fp−1,

0 if d � Fp−1.

Note that 	 is multiplicative in its second argument, that is,

	(p, de) = 	(p, d) 	(p, e)

for all primes p and for all coprime positive integers d and e.
From Lemma 3.15, it follows easily that p ∈ Rk if and only if p ≡ 1 (mod �(k)) and

	(p, q) = 0 for all prime numbers q dividing p − 1 but not dividing k . Therefore,

#
(Rk ∩ [1, x]

) =
∑

p≤ x
�(k) | p−1

∏

q | p−1
q � k

(
1 − 	(p, q)

) =
∑

p≤ x
�(k) | p−1

∑

d | p−1
(d, k)= 1

μ(d) 	(p, d)

=
∑

d ≤ x
(d, k)= 1

μ(d)
∑

p≤ x
lcm(�(k), d) | p−1

	(p, d), (5)

for all x > 0. Furthermore, byLemma3.13, given apositive integerd that is relatively prime
with k , we have that 	(p, d) = 1 and lcm(d, �(k)) | p − 1 if and only if lcm(z(d), d, �(k)) |
p − 1, which in turn is equivalent to p − 1 being divisible by

lcm
(
lcm

(
z(d), d

)
, �(k)

) = lcm
(
�(d), �(k)

) = �(dk),

where we used Lemma 3.16 and the fact that d and k are relatively prime. Hence, we get
that

∑

p≤ x
lcm(�(k),d) | p−1

	(p, d) =
∑

p≤ x
p≡ 1 (mod �(dk))

1 = π
(
x; �(dk), 1

)
, (6)

for all x > 0. Therefore, from (5) and (6), it follows that

#
(Rk ∩ [1, x]

) =
∑

d ≤ x
(d, k)= 1

μ(d)π
(
x; �(dk), 1

)
,

for all x > 0. Pick any A > 2. Also, set y := x1/4/
(√

2k
)
and z := (log x)A/2/

(√
2k

)
. Then

we have that

#
(Rk ∩ [1, x]

)

π (x)
=

∑

(d, k)= 1

μ(d)
ϕ
(
�(dk)

) − E1(x) + E2(x) + E3(x) + E4(x)
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for all x > 0, where, by Lemma 3.5, the infinite series converges absolutely, while

E1(x) :=
∑

d > x
(d, k)= 1

μ(d)
ϕ
(
�(dk)

) ,

E2(x) := 1
π (x)

∑

d ≤ z
(d, k)= 1

μ(d)�
(
x; �(dk), 1

)
,

E3(x) := 1
π (x)

∑

z< d ≤ y
(d, k)= 1

μ(d)�
(
x; �(dk), 1

)
,

and

E4(x) = 1
π (x)

∑

y< d ≤ x
(d, k)= 1

μ(d)�
(
x; �(dk), 1

)
,

It remains only to prove that E1(x), E2(x), E3(x), E4(x) go to zero as x → +∞. From
Lemma 3.5 it follows that

E1(x) 	
∑

d > y

1
ϕ
(
�(d)

) = o(1),

as x → +∞. Note that, thanks to Lemma 3.18, if d ≤ z then �(dk) ≤ (log x)A. Hence,
from Theorem 3.6, we get that

E2(x) 	 1
π (x)

· x
(log x)A

· z 	 1
(log x)A/2−1 = o(1),

as x → +∞. Observe that due to Lemma 3.18, if d ≤ y then �(dk) ≤ x1/2. Hence, applying
Lemma 3.7 and Lemma 3.5, we get that

E3(x) 	 1
π (x)

· x
log x

·
∑

d > z

1
ϕ
(
�(dk)

) = o(1),

as x → +∞. Finally, using the trivial bound π (x; b, 1) ≤ x/b and Lemma 3.5, we get that

E4(x) 	 1
π (x)

∑

d > y

(
x

�(dk)
+ π (x)

ϕ
(
�(dk)

)

)

	 x
π (x)

∑

d > y

1
ϕ
(
�(dk)

)

	 log x log log y
exp

(
δ(log y)1/2(log log y)1/2

) = o(1),

as x → +∞. The proof is complete. �
By the definition ofRk and by the inclusion-exclusion principle, it follows easily that

#
(Pk ∩ [1, x]

) =
∑

d | k
μ(d) #

(Rdk (x) ∩ [1, x]
)

for all x > 0. Therefore, by Lemma 5.1, we get that

r(Pk ) =
∑

d | k
μ(d) r(Rdk ) =

∑

d | k
μ(d)

∑

(e, dk)= 1

μ(e)
ϕ
(
�(dek)

)

=
∑

d | k

∑

(e, k)= 1

μ(de)
ϕ
(
�(dek)

) =
∞∑

f = 1

μ(f )
ϕ
(
�(fk)

) , (7)

since every squarefree integer f can be written uniquely as f = de, where d and e are
squarefree integers such that d | k and gcd(e, k) = 1. The rearrangement of series in (7) is
justified by the absolute convergence of the series of Lemma 5.1. The proof is complete.
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6 Proof of the lower bound in (1) and Proposition 1.4
Recall that K is defined as the set of positive integers k such that r(Pk ) > 0. We need the
following lemma.

Lemma 6.1 Let k be a positive integer such that 10 | k and r(Pk ) > 0, and let p ∈ Pk .
Then we have that kp ∈ K.

Proof Since p ∈ Pk , we have that gcd(p− 1, Fp−1) = k . Furthermore, since 5 | k , we have
that p ≡ 1 (mod 5), and so z(p) | p − 1 and p | Fp(p−1) due to Lemma 3.14 and 3 . In
particular, gcd(p, Fp(p−1)) = p. For the sake of brevity, put g := gcd(p − 1, Fp(p−1)). We
shall proved that g = k . First, in light of Lemma 3.11, we have that k | g . Suppose that q is
a prime factor of g/k . Then q �= p and q | Fp(p−1)/Fp−1. Furthermore, by Lemma 3.13, we
have that z(q) | p(p − 1). If p | z(q) then, by Lemma 3.14, p | q − 1, which is impossible
since q ≤ p − 1. Thus p � z(q) and so z(q) | p − 1. In particular, by Lemma 3.13, we get
that q | Fp−1. Hence, Lemma 3.12, yields that q = p, which is impossible. Therefore, we
have that g = k . Consequently, we get that

gcd
(
p(p − 1), Fp(p−1)

) = gcd(p − 1, Fp(p−1)) gcd(p, Fp(p−1)) = kp.

ThusAkp �= ∅ and, by Lemma 3.2, we have that gcd
(
�(kp), F�(kp)

) = kp. Also, since 2 | k ,
we have that 2 | �(kp). Hence, from Theorem 1.1 it follows that kp ∈ K, as desired. �
Let us prove the lower bound of Proposition 1.4. Note that �(10) = 30 and

gcd(�(10), F�(10)) = 10 so that, by Theorem 1.1, we have that r(P10) > 0. Hence, applying
Lemma 6.1 with k = 10, we get that

#
(K ∩ [1, x]

) � #
{
kp : p ∈ Pk ∩ [1, x/k]

} � x
log x

, (8)

which proves the lower bound.
If k ∈ K then, by Theorem 1.1, we have that gcd

(
�(k), F�(k)

) = k . Hence, from [11,
Lemma 2.2(iii)], it follows that k belongs to A. Therefore K ⊆ A. Consequently, on the
one hand, by (8), we get that

#
(A ∩ [1, x]

) ≥ #
(K ∩ [1, x]

) � x
log x

,

for all x ≥ 2, which is the lower bound of (1). On the other hand, by Theorem 1.3, we get
that

#
(K ∩ [1, x]

) ≤ #
(A ∩ [1, x]

) = o(x),

as x → +∞, which is the upper bound of Proposition 1.4. The proofs are complete.
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